Matrices
Expand for Python example
>>> from sympy import *
>>> init_printing(use_unicode=True)
To make a matrix in SymPy, use the Matrix
object. A matrix is constructed by providing a list of row vectors that make up the matrix. For example, to construct the matrix
\[\left[\begin{array}{cc}1 & -1\\3 & 4\\0 & 2\end{array}\right]\]
use
We have two ways to store matrices – as a matrix of symbolic objects or as a symbolic wrapper around the underlying Python Matrix
objects. The former gives access to Julia's common idioms, the latter access to SymPy's methods for matrices. ↓(M)
takes a matrix of symbolic values and returns a SymPy matrix object, ↑(𝑀)
does the reverse. The getindex
notation for a matrix of symbolic values is overridden to call the SymPy method. Matrices of symbolic objects can be created by adding Sym
as a type hint; or more commonly occur by promotion when one or more entries is symbolic.
julia> Sym[1 -1; 3 4; 0 2]
3×2 Matrix{SymPyCore.Sym}: 1 -1 3 4 0 2
julia> [Sym(1) -1; 3 4; 0 2]
3×2 Matrix{SymPyCore.Sym{PythonCall.Core.Py}}: 1 -1 3 4 0 2
Expand for Python example
>>> Matrix([[1, -1], [3, 4], [0, 2]])
⎡1 -1⎤
⎢ ⎥
⎢3 4 ⎥
⎢ ⎥
⎣0 2 ⎦
To make it easy to make column vectors, a list of elements is considered to be a column vector.
This is different in Julia
, as column syntax does not use commas.
julia> Sym[1 2 3]
1×3 Matrix{SymPyCore.Sym}: 1 2 3
Expand for Python example
>>> Matrix([1, 2, 3])
⎡1⎤
⎢ ⎥
⎢2⎥
⎢ ⎥
⎣3⎦
Matrices are manipulated just like any other object in SymPy or Python.
The resulting matrix is just a matrix with symbolic elements, so is manipulated like any other matrix
julia> M1 = Sym[1 2 3; 3 2 1]
2×3 Matrix{SymPyCore.Sym}: 1 2 3 3 2 1
julia> M2 = Sym[0, 1, 1] # can't use N
3-element Vector{SymPyCore.Sym}: 0 1 1
julia> M1 * M2
2-element Vector{SymPyCore.Sym}: 5 3
Expand for Python example
>>> M = Matrix([[1, 2, 3], [3, 2, 1]])
>>> N = Matrix([0, 1, 1])
>>> M*N
⎡5⎤
⎢ ⎥
⎣3⎦
One important thing to note about SymPy matrices is that, unlike every other object in SymPy, they are mutable. This means that they can be modified in place, as we will see below. The downside to this is that Matrix
cannot be used in places that require immutability, such as inside other SymPy expressions or as keys to dictionaries. If you need an immutable version of Matrix
, use ImmutableMatrix
.
Basic Operations
Here are some basic operations on Matrix
.
Shape
To get the shape of a matrix, use :func:~.shape()
function.
We can use Julia
generics or object methods of sympy
julia> M = Sym[1 2 3; -2 0 4]
2×3 Matrix{SymPyCore.Sym}: 1 2 3 -2 0 4
julia> size(M)
(2, 3)
julia> M.shape
(2, 3)
Expand for Python example
>>> from sympy import shape
>>> M = Matrix([[1, 2, 3], [-2, 0, 4]])
>>> M
⎡1 2 3⎤
⎢ ⎥
⎣-2 0 4⎦
>>> shape(M)
(2, 3)
Accessing Rows and Columns
To get an individual row or column of a matrix, use row
or col
. For example, M.row(0)
will get the first row. M.col(-1)
will get the last column.
We use standard Julia notation for array access
julia> M[1, :]
3-element Vector{SymPyCore.Sym}: 1 2 3
julia> M[:, end]
2-element Vector{SymPyCore.Sym}: 3 4
Expand for Python example
>>> M.row(0)
[1 2 3]
>>> M.col(-1)
⎡3⎤
⎢ ⎥
⎣4⎦
Deleting and Inserting Rows and Columns
To delete a row or column, use row_del
or col_del
. These operations will modify the Matrix in place.
These mutation operations will work if the matrix is converted via ↓
to an underlying Python matrix, but that is not illustrated here.
julia> nothing
Expand for Python example
>>> M.col_del(0)
>>> M
⎡2 3⎤
⎢ ⎥
⎣0 4⎦
>>> M.row_del(1)
>>> M
[2 3]
This is a mess. See issue 6992.
To insert rows or columns, use row_insert
or col_insert
. These operations do not operate in place.
One can use Julia
idioms, but that is not illustrated
julia> nothing
Expand for Python example
>>> M
[2 3]
>>> M = M.row_insert(1, Matrix([[0, 4]]))
>>> M
⎡2 3⎤
⎢ ⎥
⎣0 4⎦
>>> M = M.col_insert(0, Matrix([1, -2]))
>>> M
⎡1 2 3⎤
⎢ ⎥
⎣-2 0 4⎦
Unless explicitly stated, the methods mentioned below do not operate in place. In general, a method that does not operate in place will return a new Matrix
and a method that does operate in place will return None
.
Basic Methods
As noted above, simple operations like addition, multiplication and power are done just by using +
, *
, and **
. To find the inverse of a matrix, just raise it to the -1
power.
julia> M1, M2 = Sym[1 3; -2 3], Sym[0 3; 0 7]
(SymPyCore.Sym[1 3; -2 3], SymPyCore.Sym[0 3; 0 7])
julia> M1 + M2
2×2 Matrix{SymPyCore.Sym{PythonCall.Core.Py}}: 1 6 -2 10
julia> M1 * M2
2×2 Matrix{SymPyCore.Sym}: 0 24 0 15
julia> 3*M1
2×2 Matrix{SymPyCore.Sym{PythonCall.Core.Py}}: 3 9 -6 9
julia> M1^2
2×2 Matrix{SymPyCore.Sym}: -5 12 -8 3
julia> inv(M2)
ERROR: Python: NonInvertibleMatrixError: Matrix det == 0; not invertible. Python stacktrace: [1] _inv_DM @ sympy.matrices.inverse ~/work/SymPyCore.jl/SymPyCore.jl/docs/.CondaPkg/env/lib/python3.11/site-packages/sympy/matrices/inverse.py:328 [2] _inv @ sympy.matrices.inverse ~/work/SymPyCore.jl/SymPyCore.jl/docs/.CondaPkg/env/lib/python3.11/site-packages/sympy/matrices/inverse.py:504 [3] inv @ sympy.matrices.matrixbase ~/work/SymPyCore.jl/SymPyCore.jl/docs/.CondaPkg/env/lib/python3.11/site-packages/sympy/matrices/matrixbase.py:5225
Expand for Python example
>>> M = Matrix([[1, 3], [-2, 3]])
>>> N = Matrix([[0, 3], [0, 7]])
>>> M + N
⎡1 6 ⎤
⎢ ⎥
⎣-2 10⎦
>>> M*N
⎡0 24⎤
⎢ ⎥
⎣0 15⎦
>>> 3*M
⎡3 9⎤
⎢ ⎥
⎣-6 9⎦
>>> M**2
⎡-5 12⎤
⎢ ⎥
⎣-8 3 ⎦
>>> M**-1
⎡1/3 -1/3⎤
⎢ ⎥
⎣2/9 1/9 ⎦
>>> N**-1
Traceback (most recent call last):
...
NonInvertibleMatrixError: Matrix det == 0; not invertible.
To take the transpose of a Matrix, use T
.
Use '
for the adjoint, transpose
for transpose
julia> M = Sym[1 2 3; 4 5 6]
2×3 Matrix{SymPyCore.Sym}: 1 2 3 4 5 6
julia> transpose(M)
3×2 Matrix{SymPyCore.Sym{PythonCall.Core.Py}}: 1 4 2 5 3 6
Expand for Python example
>>> M = Matrix([[1, 2, 3], [4, 5, 6]])
>>> M
⎡1 2 3⎤
⎢ ⎥
⎣4 5 6⎦
>>> M.T
⎡1 4⎤
⎢ ⎥
⎢2 5⎥
⎢ ⎥
⎣3 6⎦
Matrix Constructors
Several constructors exist for creating common matrices. To create an identity matrix, use eye
. eye(n)
will create an $n\times n$ identity matrix.
This cnostructor is not exported, so needs to be qualified
julia> sympy.eye(3)
3×3 Matrix{SymPyCore.Sym{PythonCall.Core.Py}}: 1 0 0 0 1 0 0 0 1
julia> sympy.eye(4)
4×4 Matrix{SymPyCore.Sym{PythonCall.Core.Py}}: 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
Expand for Python example
>>> eye(3)
⎡1 0 0⎤
⎢ ⎥
⎢0 1 0⎥
⎢ ⎥
⎣0 0 1⎦
>>> eye(4)
⎡1 0 0 0⎤
⎢ ⎥
⎢0 1 0 0⎥
⎢ ⎥
⎢0 0 1 0⎥
⎢ ⎥
⎣0 0 0 1⎦
To create a matrix of all zeros, use zeros
. zeros(n, m)
creates an $n\times m$ matrix of $0$ s.
This is more idiomatically done with a type:
julia> zeros(Sym, 2, 3)
2×3 Matrix{SymPyCore.Sym}: 0 0 0 0 0 0
Expand for Python example
>>> zeros(2, 3)
⎡0 0 0⎤
⎢ ⎥
⎣0 0 0⎦
Similarly, ones
creates a matrix of ones.
julia> ones(Sym, 3, 4)
3×4 Matrix{SymPyCore.Sym}: 1 1 1 1 1 1 1 1 1 1 1 1
Expand for Python example
>>> ones(3, 2)
⎡1 1⎤
⎢ ⎥
⎢1 1⎥
⎢ ⎥
⎣1 1⎦
To create diagonal matrices, use diag
. The arguments to diag
can be either numbers or matrices. A number is interpreted as a $1\times 1$ matrix. The matrices are stacked diagonally. The remaining elements are filled with $0$ s.
We qualify the use of diag
, it is not exported. It has a different calling pattern than the diag
method of the standard LinearAlgebra
package.
julia> sympy.diag(1,2,3)
3×3 Matrix{SymPyCore.Sym{PythonCall.Core.Py}}: 1 0 0 0 2 0 0 0 3
julia> sympy.diag(-1, ones(Sym, 2, 2), Sym[5,7,5])
6×4 Matrix{SymPyCore.Sym{PythonCall.Core.Py}}: -1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 5 0 0 0 7 0 0 0 5
Expand for Python example
>>> diag(1, 2, 3)
⎡1 0 0⎤
⎢ ⎥
⎢0 2 0⎥
⎢ ⎥
⎣0 0 3⎦
>>> diag(-1, ones(2, 2), Matrix([5, 7, 5]))
⎡-1 0 0 0⎤
⎢ ⎥
⎢0 1 1 0⎥
⎢ ⎥
⎢0 1 1 0⎥
⎢ ⎥
⎢0 0 0 5⎥
⎢ ⎥
⎢0 0 0 7⎥
⎢ ⎥
⎣0 0 0 5⎦
Advanced Methods
Determinant
To compute the determinant of a matrix, use det
.
This can be called using det
(if the LinearAlgebra
package is loaded) or as a method
julia> M = Sym[1 0 1; 2 -1 3; 4 3 2]
3×3 Matrix{SymPyCore.Sym}: 1 0 1 2 -1 3 4 3 2
julia> M.det()
-1
julia> using LinearAlgebra
julia> det(M)
-1
Expand for Python example
>>> M = Matrix([[1, 0, 1], [2, -1, 3], [4, 3, 2]])
>>> M
⎡1 0 1⎤
⎢ ⎥
⎢2 -1 3⎥
⎢ ⎥
⎣4 3 2⎦
>>> M.det()
-1
RREF
To put a matrix into reduced row echelon form, use rref
. rref
returns a tuple of two elements. The first is the reduced row echelon form, and the second is a tuple of indices of the pivot columns.
julia> M = Sym[1 0 1 3; 2 3 4 7; -1 -3 -3 -4]
3×4 Matrix{SymPyCore.Sym}: 1 0 1 3 2 3 4 7 -1 -3 -3 -4
julia> M.rref()
(SymPyCore.Sym{PythonCall.Core.Py}[1 0 1 3; 0 1 2/3 1/3; 0 0 0 0], (0, 1))
Expand for Python example
>>> M = Matrix([[1, 0, 1, 3], [2, 3, 4, 7], [-1, -3, -3, -4]])
>>> M
⎡1 0 1 3 ⎤
⎢ ⎥
⎢2 3 4 7 ⎥
⎢ ⎥
⎣-1 -3 -3 -4⎦
>>> M.rref()
⎛⎡1 0 1 3 ⎤ ⎞
⎜⎢ ⎥ ⎟
⎜⎢0 1 2/3 1/3⎥, (0, 1)⎟
⎜⎢ ⎥ ⎟
⎝⎣0 0 0 0 ⎦ ⎠
The first element of the tuple returned by rref
is of type Matrix
. The second is of type tuple
.
Nullspace
To find the nullspace of a matrix, use nullspace
. nullspace
returns a list
of column vectors that span the nullspace of the matrix.
julia> M = Sym[1 2 3 0 0; 4 10 0 0 1]
2×5 Matrix{SymPyCore.Sym}: 1 2 3 0 0 4 10 0 0 1
julia> M.nullspace()
3-element Vector{Matrix{SymPyCore.Sym{PythonCall.Core.Py}}}: [-15; 6; … ; 0; 0;;] [0; 0; … ; 1; 0;;] [1; -1/2; … ; 0; 1;;]
Expand for Python example
>>> M = Matrix([[1, 2, 3, 0, 0], [4, 10, 0, 0, 1]])
>>> M
⎡1 2 3 0 0⎤
⎢ ⎥
⎣4 10 0 0 1⎦
>>> M.nullspace()
⎡⎡-15⎤ ⎡0⎤ ⎡ 1 ⎤⎤
⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥
⎢⎢ 6 ⎥ ⎢0⎥ ⎢-1/2⎥⎥
⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥
⎢⎢ 1 ⎥, ⎢0⎥, ⎢ 0 ⎥⎥
⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥
⎢⎢ 0 ⎥ ⎢1⎥ ⎢ 0 ⎥⎥
⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥
⎣⎣ 0 ⎦ ⎣0⎦ ⎣ 1 ⎦⎦
Columnspace
To find the columnspace of a matrix, use columnspace
. columnspace
returns a list
of column vectors that span the columnspace of the matrix.
julia> M = Sym[1 1 2; 2 1 3; 3 1 4]
3×3 Matrix{SymPyCore.Sym}: 1 1 2 2 1 3 3 1 4
julia> M.columnspace()
2-element Vector{Matrix{SymPyCore.Sym{PythonCall.Core.Py}}}: [1; 2; 3;;] [1; 1; 1;;]
Expand for Python example
>>> M = Matrix([[1, 1, 2], [2 ,1 , 3], [3 , 1, 4]])
>>> M
⎡1 1 2⎤
⎢ ⎥
⎢2 1 3⎥
⎢ ⎥
⎣3 1 4⎦
>>> M.columnspace()
⎡⎡1⎤ ⎡1⎤⎤
⎢⎢ ⎥ ⎢ ⎥⎥
⎢⎢2⎥, ⎢1⎥⎥
⎢⎢ ⎥ ⎢ ⎥⎥
⎣⎣3⎦ ⎣1⎦⎦
Eigenvalues, Eigenvectors, and Diagonalization
To find the eigenvalues of a matrix, use eigenvals
. eigenvals
returns a dictionary of eigenvalue: algebraic_multiplicity
pairs (similar to the output of roots).
The LinearAlgebra
generic functions have methods eigvals
and eigvecs
for this task
julia> M = Sym[3 -2 4 -2; 5 3 -3 -2; 5 -2 2 -2; 5 -2 -3 3]
4×4 Matrix{SymPyCore.Sym}: 3 -2 4 -2 5 3 -3 -2 5 -2 2 -2 5 -2 -3 3
julia> eigvals(M)
4-element Vector{SymPyCore.Sym{PythonCall.Core.Py}}: -2 3 5 5
Expand for Python example
>>> M = Matrix([[3, -2, 4, -2], [5, 3, -3, -2], [5, -2, 2, -2], [5, -2, -3, 3]])
>>> M
⎡3 -2 4 -2⎤
⎢ ⎥
⎢5 3 -3 -2⎥
⎢ ⎥
⎢5 -2 2 -2⎥
⎢ ⎥
⎣5 -2 -3 3 ⎦
>>> M.eigenvals()
{-2: 1, 3: 1, 5: 2}
This means that M
has eigenvalues -2, 3, and 5, and that the eigenvalues -2 and 3 have algebraic multiplicity 1 and that the eigenvalue 5 has algebraic multiplicity 2.
To find the eigenvectors of a matrix, use eigenvects
. eigenvects
returns a list of tuples of the form (eigenvalue, algebraic_multiplicity, [eigenvectors])
.
julia> eigvecs(M)
4×4 Matrix{SymPyCore.Sym{PythonCall.Core.Py}}: 0 1 1 0 1 1 1 -1 1 1 1 0 1 1 0 1
julia> M.eigenvects()
3-element Vector{Tuple{SymPyCore.Sym{PythonCall.Core.Py}, SymPyCore.Sym{PythonCall.Core.Py}, Vector{Matrix{SymPyCore.Sym{PythonCall.Core.Py}}}}}: (-2, 1, [[0; 1; 1; 1;;]]) (3, 1, [[1; 1; 1; 1;;]]) (5, 2, [[1; 1; 1; 0;;], [0; -1; 0; 1;;]])
Expand for Python example
>>> M.eigenvects()
⎡⎛ ⎡⎡0⎤⎤⎞ ⎛ ⎡⎡1⎤⎤⎞ ⎛ ⎡⎡1⎤ ⎡0 ⎤⎤⎞⎤
⎢⎜ ⎢⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥ ⎢ ⎥⎥⎟⎥
⎢⎜ ⎢⎢1⎥⎥⎟ ⎜ ⎢⎢1⎥⎥⎟ ⎜ ⎢⎢1⎥ ⎢-1⎥⎥⎟⎥
⎢⎜-2, 1, ⎢⎢ ⎥⎥⎟, ⎜3, 1, ⎢⎢ ⎥⎥⎟, ⎜5, 2, ⎢⎢ ⎥, ⎢ ⎥⎥⎟⎥
⎢⎜ ⎢⎢1⎥⎥⎟ ⎜ ⎢⎢1⎥⎥⎟ ⎜ ⎢⎢1⎥ ⎢0 ⎥⎥⎟⎥
⎢⎜ ⎢⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥ ⎢ ⎥⎥⎟⎥
⎣⎝ ⎣⎣1⎦⎦⎠ ⎝ ⎣⎣1⎦⎦⎠ ⎝ ⎣⎣0⎦ ⎣1 ⎦⎦⎠⎦
This shows us that, for example, the eigenvalue 5 also has geometric multiplicity 2, because it has two eigenvectors. Because the algebraic and geometric multiplicities are the same for all the eigenvalues, M
is diagonalizable.
To diagonalize a matrix, use diagonalize
. diagonalize
returns a tuple (P, D)
, where D
is diagonal and M = PDP^{-1}
.
julia> P, D = M.diagonalize()
(SymPyCore.Sym{PythonCall.Core.Py}[0 1 1 0; 1 1 1 -1; 1 1 1 0; 1 1 0 1], SymPyCore.Sym{PythonCall.Core.Py}[-2 0 0 0; 0 3 0 0; 0 0 5 0; 0 0 0 5])
julia> P * D * inv(P)
4×4 Matrix{SymPyCore.Sym{PythonCall.Core.Py}}: 3 -2 4 -2 5 3 -3 -2 5 -2 2 -2 5 -2 -3 3
julia> P * D * inv(P) == M
true
Expand for Python example
>>> P, D = M.diagonalize()
>>> P
⎡0 1 1 0 ⎤
⎢ ⎥
⎢1 1 1 -1⎥
⎢ ⎥
⎢1 1 1 0 ⎥
⎢ ⎥
⎣1 1 0 1 ⎦
>>> D
⎡-2 0 0 0⎤
⎢ ⎥
⎢0 3 0 0⎥
⎢ ⎥
⎢0 0 5 0⎥
⎢ ⎥
⎣0 0 0 5⎦
>>> P*D*P**-1
⎡3 -2 4 -2⎤
⎢ ⎥
⎢5 3 -3 -2⎥
⎢ ⎥
⎢5 -2 2 -2⎥
⎢ ⎥
⎣5 -2 -3 3 ⎦
>>> P*D*P**-1 == M
True
lambda
is a reserved keyword in Python, so to create a Symbol called $\lambda$, while using the same names for SymPy Symbols and Python variables, use lamda
(without the b
). It will still pretty print as $\lambda$.
Note that since eigenvects
also includes the eigenvalues, you should use it instead of eigenvals
if you also want the eigenvectors. However, as computing the eigenvectors may often be costly, eigenvals
should be preferred if you only wish to find the eigenvalues.
If all you want is the characteristic polynomial, use charpoly
. This is more efficient than eigenvals
, because sometimes symbolic roots can be expensive to calculate.
julia> @syms lambda => "λ"
(λ,)
julia> p = M.charpoly(lambda)
PurePoly(λ^4 - 11*λ^3 + 29*λ^2 + 35*λ - 150, λ, domain='ZZ')
julia> factor(p.as_expr())
2 (λ - 5) ⋅(λ - 3)⋅(λ + 2)
Expand for Python example
>>> lamda = symbols('lamda')
>>> p = M.charpoly(lamda)
>>> factor(p.as_expr())
2
(λ - 5) ⋅(λ - 3)⋅(λ + 2)
Add an example for jordan_form
, once it is fully implemented.
Possible Issues
Zero Testing
If your matrix operations are failing or returning wrong answers, the common reasons would likely be from zero testing. If there is an expression not properly zero-tested, it can possibly bring issues in finding pivots for gaussian elimination, or deciding whether the matrix is inversible, or any high level functions which relies on the prior procedures.
Currently, the SymPy's default method of zero testing _iszero
is only guaranteed to be accurate in some limited domain of numerics and symbols, and any complicated expressions beyond its decidability are treated as None
, which behaves similarly to logical False
.
The list of methods using zero testing procedures are as follows:
echelon_form
, is_echelon
, rank
, rref
, nullspace
, eigenvects
, inverse_ADJ
, inverse_GE
, inverse_LU
, LUdecomposition
, LUdecomposition_Simple
, LUsolve
They have property iszerofunc
opened up for user to specify zero testing method, which can accept any function with single input and boolean output, while being defaulted with _iszero
.
Here is an example of solving an issue caused by undertested zero. While the output for this particular matrix has since been improved, the technique below is still of interest.
julia> @syms q::positive
(q,)
julia> M = [-2cosh(q/3) exp(-q) 1; exp(q) -2cosh(q/3) 1; 1 1 -2cosh(q/3)]
3×3 Matrix{SymPyCore.Sym{PythonCall.Core.Py}}: -2*cosh(q/3) exp(-q) 1 exp(q) -2*cosh(q/3) 1 1 1 -2*cosh(q/3)
julia> M.nullspace()
1-element Vector{Matrix{SymPyCore.Sym{PythonCall.Core.Py}}}: [-(-2*exp(q)*cosh(q/3) - 4*cosh(q/3)^2 - 1 - 2*exp(-q)*cosh(q/3))/(4*exp(q)*cosh(q/3)^2 + 4*cosh(q/3) + exp(-q)); -(1 - 4*cosh(q/3)^2)/(2*cosh(q/3) + exp(-q)); 1;;]
Expand for Python example
>>> from sympy import *
>>> q = Symbol("q", positive = True)
>>> m = Matrix([
... [-2*cosh(q/3), exp(-q), 1],
... [ exp(q), -2*cosh(q/3), 1],
... [ 1, 1, -2*cosh(q/3)]])
>>> m.nullspace() # doctest: +SKIP
[]
You can trace down which expression is being underevaluated, by injecting a custom zero test with warnings enabled.
julia> my_iszero(x) = x.is_zero
my_iszero (generic function with 1 method)
julia> my_iszero.(M)
3×3 BitMatrix: 0 0 0 0 0 0 0 0 0
Expand for Python example
>>> import warnings
>>>
>>> def my_iszero(x):
... try:
... result = x.is_zero
... except AttributeError:
... result = None
...
... # Warnings if evaluated into None
... if result is None:
... warnings.warn("Zero testing of {} evaluated into None".format(x))
... return result
...
>>> m.nullspace(iszerofunc=my_iszero) # doctest: +SKIP
__main__:9: UserWarning: Zero testing of 4*cosh(q/3)**2 - 1 evaluated into None
__main__:9: UserWarning: Zero testing of (-exp(q) - 2*cosh(q/3))*(-2*cosh(q/3) - exp(-q)) - (4*cosh(q/3)**2 - 1)**2 evaluated into None
__main__:9: UserWarning: Zero testing of 2*exp(q)*cosh(q/3) - 16*cosh(q/3)**4 + 12*cosh(q/3)**2 + 2*exp(-q)*cosh(q/3) evaluated into None
__main__:9: UserWarning: Zero testing of -(4*cosh(q/3)**2 - 1)*exp(-q) - 2*cosh(q/3) - exp(-q) evaluated into None
[]
In this case, (-exp(q) - 2*cosh(q/3))*(-2*cosh(q/3) - exp(-q)) - (4*cosh(q/3)**2 - 1)**2
should yield zero, but the zero testing had failed to catch. possibly meaning that a stronger zero test should be introduced. For this specific example, rewriting to exponentials and applying simplify would make zero test stronger for hyperbolics, while being harmless to other polynomials or transcendental functions.
We use broadcasting over the matrix
julia> my_iszero(x) = x.rewrite(exp).simplify().is_zero
my_iszero (generic function with 1 method)
julia> my_iszero.(M)
3×3 BitMatrix: 0 0 0 0 0 0 0 0 0
Expand for Python example
>>> def my_iszero(x):
... try:
... result = x.rewrite(exp).simplify().is_zero
... except AttributeError:
... result = None
...
... # Warnings if evaluated into None
... if result is None:
... warnings.warn("Zero testing of {} evaluated into None".format(x))
... return result
...
>>> m.nullspace(iszerofunc=my_iszero) # doctest: +SKIP
__main__:9: UserWarning: Zero testing of -2*cosh(q/3) - exp(-q) evaluated into None
⎡⎡ ⎛ q ⎛q⎞⎞ -q 2⎛q⎞ ⎤⎤
⎢⎢- ⎜- ℯ - 2⋅cosh⎜─⎟⎟⋅ℯ + 4⋅cosh ⎜─⎟ - 1⎥⎥
⎢⎢ ⎝ ⎝3⎠⎠ ⎝3⎠ ⎥⎥
⎢⎢─────────────────────────────────────────⎥⎥
⎢⎢ ⎛ 2⎛q⎞ ⎞ ⎛q⎞ ⎥⎥
⎢⎢ 2⋅⎜4⋅cosh ⎜─⎟ - 1⎟⋅cosh⎜─⎟ ⎥⎥
⎢⎢ ⎝ ⎝3⎠ ⎠ ⎝3⎠ ⎥⎥
⎢⎢ ⎥⎥
⎢⎢ ⎛ q ⎛q⎞⎞ ⎥⎥
⎢⎢ -⎜- ℯ - 2⋅cosh⎜─⎟⎟ ⎥⎥
⎢⎢ ⎝ ⎝3⎠⎠ ⎥⎥
⎢⎢ ──────────────────── ⎥⎥
⎢⎢ 2⎛q⎞ ⎥⎥
⎢⎢ 4⋅cosh ⎜─⎟ - 1 ⎥⎥
⎢⎢ ⎝3⎠ ⎥⎥
⎢⎢ ⎥⎥
⎣⎣ 1 ⎦⎦
You can clearly see nullspace
returning proper result, after injecting an alternative zero test.
Note that this approach is only valid for some limited cases of matrices containing only numerics, hyperbolics, and exponentials. For other matrices, you should use different method opted for their domains.
Possible suggestions would be either taking advantage of rewriting and simplifying, with tradeoff of speed, or using random numeric testing, with tradeoff of accuracy.
If you wonder why there is no generic algorithm for zero testing that can work with any symbolic entities, it's because of the constant problem stating that zero testing is undecidable, and not only the SymPy, but also other computer algebra systems would face the same fundamental issue.
However, discovery of any zero test failings can provide some good examples to improve SymPy, so if you have encountered one, you can report the issue to SymPy issue tracker to get detailed help from the community.
Inspired by https://gitter.im/sympy/sympy?at=5b7c3e8ee5b40332abdb206c
Discovered from https://github.com/sympy/sympy/issues/15141
Improved by https://github.com/sympy/sympy/pull/19548
Suggested from https://github.com/sympy/sympy/issues/10120
Suggested from https://github.com/sympy/sympy/issues/10279
https://en.wikipedia.org/wiki/Constant_problem
How mathematica tests zero https://reference.wolfram.com/language/ref/PossibleZeroQ.html
How matlab tests zero https://web.archive.org/web/20200307091449/https://www.mathworks.com/help/symbolic/mupad_ref/iszero.html
https://github.com/sympy/sympy/issues